Transverse (Spin) Structure of Hadrons

Matthias Burkardt

New Mexico State University

February 2, 2012
Deeply virtual Compton scattering (DVCS)
\[\rightarrow \] Generalized parton distributions (GPDs)
\[\rightarrow \] 'transverse imaging'
Chromodynamik lensing and \(\perp \) single-spin asymmetries (SSA)

\[
\begin{align*}
\text{transverse distortion of PDFs} & \quad + \quad \text{final state interactions} \\
\{ & \quad \Rightarrow \\
\text{SSA in} & \quad \gamma N \rightarrow \pi + X \\
\text{quark-gluon correlations} & \quad \rightarrow \perp \text{force on } q \text{ in DIS} \\
\text{Summary} &
\end{align*}
\]
3 D imaging — join the experience!
virtual Compton scattering: $\gamma^* p \rightarrow \gamma p$ (actually: $e^- p \rightarrow e^- \gamma p$)

‘deeply’: $-q_\gamma^2 \gg M_p^2, |t| \rightarrow$ Compton amplitude dominated by (coherent superposition of) Compton scattering off single quarks

\rightarrow only difference between form factor (a) and DVCS amplitude (b) is replacement of photon vertex by two photon vertices connected by quark (energy denominator depends on quark momentum fraction x)

\rightarrow DVCS amplitude provides access to momentum-decomposition of form factor = Generalized Parton Distribution (GPDs).

$$\int dx H_q(x, \xi, t) = F_1^q(t) \quad \int dx E_q(x, \xi, t) = F_2^q(t)$$
Deeply Virtual Compton Scattering (DVCS)

- Virtual Compton scattering: $\gamma^* p \rightarrow \gamma p$ (actually: $e^- p \rightarrow e^- \gamma p$)
- ‘deeply’: $-q^2_\gamma \gg M^2_p, |t| \rightarrow$ Compton amplitude dominated by (coherent superposition of) Compton scattering off single quarks
- Only difference between form factor (a) and DVCS amplitude (b) is replacement of photon vertex by two photon vertices connected by quark (energy denominator depends on quark momentum fraction x)
- DVCS amplitude provides access to momentum-decomposition of form factor = Generalized Parton Distribution (GPDs).

\[\int dx H_q(x, \xi, t) = F_1^q(t) \]
\[\int dx E_q(x, \xi, t) = F_2^q(t) \]

Future experiments
JLab@12GeV, COMPASS II, EIC, PANDA/FAIR
form factors: \(\frac{FT}{\leftrightarrow} \rho(\vec{r}) \)

\(GPDs(x, \vec{\Delta}) \): form factor for quarks with momentum fraction \(x \)

suitable FT of \(GPDs \) should provide spatial distribution of quarks with momentum fraction \(x \)

careful: cannot measure longitudinal momentum \((x) \) and longitudinal position simultaneously (Heisenberg)

consider purely transverse momentum transfer

Impact Parameter Dependent Quark Distributions

\[
q(x, \mathbf{b}_\perp) = \int \frac{d^2 \Delta_\perp}{(2\pi)^2} H(x, \xi = 0, -\Delta_\perp^2) e^{-i\mathbf{b}_\perp \cdot \mathbf{\Delta}_\perp}
\]

\(q(x, \mathbf{b}_\perp) \) = parton distribution as a function of the separation \(\mathbf{b}_\perp \) from the transverse center of momentum \(\mathbf{R}_\perp \equiv \sum_{i \in q, g} r_{\perp, i} x_i \)

- No relativistic corrections (Galilean subgroup!)

- corollary: interpretation of 2d-FT of \(F_1(Q^2) \) as charge density in transverse plane also free of relativistic corrections

- probabilistic interpretation
Impact parameter dependent quark distributions

$q(x, b_\perp)$ for unpol. p

$q(x, b_\perp) = \int \frac{d^2 \Delta_\perp}{(2\pi)^2} H(x, 0, -\Delta_\perp^2) e^{-i b_\perp \cdot \Delta_\perp}$

- $x =$ momentum fraction of the quark
- $\vec{b} = \perp$ distance of quark from \perp center of momentum
- small x: large ’meson cloud’
- larger x: compact ’valence core’
- $x \to 1$: active quark becomes center of momentum
 $\rightarrow \vec{b}_\perp \to 0$ (narrow distribution) for $x \to 1$
Impact parameter dependent quark distributions

proton polarized in \(+\hat{x} \) direction

no axial symmetry!

\[
q(x, b_\perp) = \int \frac{d^2 \Delta_\perp}{(2\pi)^2} H_q(x, 0, -\Delta^2_\perp) e^{-i b_\perp \cdot \Delta_\perp} \\
- \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_\perp}{(2\pi)^2} E_q(x, 0, -\Delta^2_\perp) e^{-i b_\perp \cdot \Delta_\perp}
\]

Physics: relevant density in leading twist

DIS is \(j^+ \equiv j^0 + j^3 \) and left-right asymmetry from \(j^3 \)

Impact parameter dependent quark distributions

proton polarized in $+\hat{x}$ direction

\[q(x, b_\perp) = \int \frac{d^2 \Delta_\perp}{(2\pi)^2} H_q(x, 0, -\Delta_\perp^2) e^{-ib_\perp \cdot \Delta_\perp} \]
\[-\frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_\perp}{(2\pi)^2} E_q(x, 0, -\Delta_\perp^2) e^{-ib_\perp \cdot \Delta_\perp} \]

sign & magnitude of the average shift
model-independently related to p/n anomalous magnetic moments:

\[\langle b_y^q \rangle \equiv \int dx \int d^2 b_\perp q(x, b_\perp) b_y \]
\[= \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q}{2M} \]
Impact parameter dependent quark distributions

\[\langle b^q \rangle \equiv \int dx \int d^2 b_{\perp} q(x, b_{\perp}) b_y = \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q}{2M} \]

\(\kappa^p = 1.913 = \frac{2}{3} \kappa_u^p - \frac{1}{3} \kappa_d^p + \ldots \)
- \(u \)-quarks: \(\kappa_u^p = 2\kappa_p + \kappa_n = 1.673 \)
- shift in \(+\hat{y} \) direction
- \(d \)-quarks: \(\kappa_d^p = 2\kappa_n + \kappa_p = -2.033 \)
- shift in \(-\hat{y} \) direction
- \(\langle b_y^q \rangle = \mathcal{O}(\pm 0.2 \text{fm}) \)
Impact parameter dependent quark distributions

- Sign & magnitude of the average shift
- Model-independently related to p/n anomalous magnetic moments:

\[\langle b_y^q \rangle \equiv \int dx \int d^2b_q(x, b_{\perp})b_y \]

\[= \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q}{2M} \]

- Lattice QCD (QCDSF): lowest moment
Angular Momentum Carried by Quarks

transverse images ↔ Ji relation for quark angular momentum:

- \(J^x_q = m_N \int dx \, x r^y q(x, r_\perp) \) with \(b^y = r^y - \frac{1}{2m_N} \), where \(q(x, r_\perp) \) is distribution relative to CoM of whole nucleon
- recall: \(q(x, b_\perp) \) for nucleon polarized in \(+\hat{\mathbf{x}}\) direction

\[
q(x, b_\perp) = \int \frac{d^2 \Delta_\perp}{(2\pi)^2} H_q(x, 0, -\Delta^2_\perp) e^{-i b_\perp \cdot \Delta_\perp} - \frac{1}{2M_N} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_\perp}{(2\pi)^2} E_q(x, 0, -\Delta^2_\perp) e^{-i b_\perp \cdot \Delta_\perp}
\]

\[
\Rightarrow J^x_q = M_N \int dx \, x r^y q(x, r_\perp) = \int dx \, x \left(m_N b^y + \frac{1}{2} \right) q(x, r_\perp) = \frac{1}{2} \int dx \, x [H(x, 0, 0) + E(x, 0, 0)]
\]

- X.Ji(1996): rotational invariance ⇒ apply to all components of \(\vec{J}_q \)
- partonic interpretation exists only for \(\perp \) components!
Angular Momentum Carried by Quarks

lattice: QCDSF

\[J^q = \frac{1}{2} \int dx \, x [H(x, 0, 0) + E(x, 0, 0)] \]

\[L^q = J^q - \frac{1}{2} \Delta \Sigma^q \]

- no disconnected quark loops
- chiral extrapolation
Transverse Imaging in Momentum Space

TMDs

- **Transverse Momentum Dependent Parton Distributions**
- 8 structures possible at leading twist (only 3 for PDFs)
- f_{1T}^\perp and h_1^\perp require both **orbital angular momentum** and **final state interaction**
- can be measured in semi-inclusive deep-inelastic scattering (SIDIS) & Drell-Yan (DY) $q\bar{q} \rightarrow \mu^+\mu^-$

experiments

JLab@6GeV & 12GeV, HERMES, COMPASS I & II, RHIC, EIC, FAIR/PANDA
GPD \leftrightarrow Single Spin Asymmetries (SSA)

Sivers f_{1T}^{\perp} in semi-inclusive deep-inelastic scattering (SIDIS) $\gamma p \rightarrow \pi X$

- u,d distributions in \perp polarized proton have left-right asymmetry in \perp position space (T-even!); sign 'determined' by κ_u & κ_d
- attractive FSI deflects active quark towards the CoM
- FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$-direction into momentum asymmetry that favors $-\hat{y}$ direction → 'chromodynamic lensing'

$\Rightarrow \quad \kappa_p, \kappa_n \leftrightarrow$ sign of SSA!!!!!!! MB, PRD 69, 074032 (2004)

- confirmed by HERMES (and recent COMPASS) p data; consistent with vanishing isoscalar Sivers (COMPASS) → G. Schnell
compare FSI for ’red’ q that is being knocked out of nucleon with ISI for ’anti-red’ \bar{q} that is about to annihilate with a ’red’ target q

FSI in SIDIS

- knocked-out q ’red’
- \rightarrow spectators ’anti-red’
- \rightarrow interaction between knocked-out quark and spectators attractive

ISI in DY

- incoming \bar{q} ’anti-red’
- \rightarrow struck target q ’red’
- \rightarrow spectators also ’anti-red’
- \rightarrow interaction between incoming \bar{q} and spectators repulsive

\[f_{1T}^\perp(x, \mathbf{k}_\perp)_{DY} = -f_{1T}^\perp(x, \mathbf{k}_\perp)_{SIDIS} \quad \text{and} \quad h_1^\perp(x, \mathbf{k}_\perp)_{DY} = -h_1^\perp(x, \mathbf{k}_\perp)_{SIDIS} \]

critical test of TMD factorization approach
Sign of Boer-Mulders Function

- Transversity distribution in unpolarized target described by chirally odd GPD \bar{E}_T (M. Diehl & P. Haegler ’05)
- $\bar{E}_T > 0$ for u & d (QCDSF)
- Connection $h^\perp_1(x, k_\perp) \leftrightarrow \bar{E}_T$ similar to $f^\perp_{1T}(x, k_\perp) \leftrightarrow E$ (MB ’05)
- $h^\perp_1(x, k_\perp) < 0$ for u/p, d/p, u/π, \bar{d}/π
- $h^\perp_1_{SIDIS} = -h^\perp_1_{DY}$

Experiments (no polarization needed!): HERMES, COMPASS, RHIC, JLab@12GeV, FAIR/PANDA, EIC
Primordial Quark Transversity Distribution

→ \perp \text{ quark pol.}
Probing BM Function in Tagged SIDIS

Flip of Quark Transverse Spin Component

when \perp pol. quark absorbs γ^*, \perp polarization
- gets reduced in size
- tilted symmetrically w.r.t. normal of lepton scattering plane
Primordial Quark Transversity Distribution

→ ⊥ quark pol.
Quark Transversity Distribution after γ^* Absorption

→ \perp quark pol.

lepton scattering plane
\perp momentum (of q) due to FSI

\perp quark pol.

k^q_\perp due to FSI

lepton scattering plane
additional \perp momentum (of π) due to Collins effect

Collins: favored π momentum preferentially to left (quark spin up)
net k^π_\perp (FSI + Collins)

- k_\perp due to Collins
- k^q_\perp due to FSI
- net k^q_\perp

lepton scattering plane
net k^π_\perp (FSI + Collins)

$\cos 2\pi$ modulation of k^π_\perp
higher twist in polarized DIS

- $\sigma_{LL} \propto g_1 - \frac{2M}{\nu} g_2$
- $g_1 = \frac{1}{2} \sum_q e_q^2 g_1^q$ with $g_1^q = q^+(x) + \bar{q}^+(x) - q^-(x) - \bar{q}^-(x)$
- g_2 involves quark-gluon correlations

→ no parton interpret. as difference between number densities for g_2

- for \perp pol. target, $g_1 \& g_2$ contribute equally

$$\sigma_{LT} \propto g_T \equiv g_1 + g_2$$

→ 'clean' separation between g_2 and $\frac{1}{Q^2}$ corrections to g_1

What can we learn from g_2?

- $g_2 = g_2^{WW} + \bar{g}_2$ with $g_2^{WW}(x) \equiv -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y)$

$$d_2 \equiv 3 \int dx x^2 \bar{g}_2(x) = \frac{1}{2MP^2 S_x} \left\langle P, S | \bar{q}(0) g G^+(0) \gamma^+ q(0) | P, S \right\rangle$$
\[
\begin{align*}
\bar{d}_2 &\equiv 3 \int dx \ x^2 \tilde{g}_2(x) = \frac{1}{2M^2P + 2} \left\langle P, S \mid \bar{q}(0) g G^{+y}(0) \gamma^+ q(0) \right\rangle_{P, S} \\
\sqrt{2}G^{+y} &= G^{0y} + G^{zy} = -E^y + B^x
\end{align*}
\]
\[d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP^2 + S_x} \langle P, S \mid \bar{q}(0) g G^{+y}(0) \gamma^+ q(0) \mid P, S \rangle \]

color Lorentz force

\[
\sqrt{2} G^{+y} = G^{0y} + G^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B} \right)^y \quad \text{for} \quad \vec{v} = (0, 0, -1)
\]
\[
d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP^2 + 2Sx} \langle P, S \mid \bar{q}(0)gG^{+y}(0)\gamma^+q(0) \mid P, S \rangle
\]

color Lorentz force

\[
\sqrt{2}G^{+y} = G^{0y} + G^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y \quad \text{for} \quad \vec{v} = (0, 0, -1)
\]

\(\rightarrow d_2 \leftrightarrow \) average **color Lorentz force** acting on quark moving with \(v = c\) in \(-\hat{z}\) direction in the instant after being struck by \(\gamma^*\)

\[
\langle F^y \rangle = -2M^2d_2 = -\frac{M}{P^2 + 2Sx} \langle P, S \mid \bar{q}(0)gG^{+y}(0)\gamma^+q(0) \mid P, S \rangle
\]

cf. Qiu-Sterman matrix element \(\langle k^y \rangle \equiv \int_0^1 dx \int d^2k_\perp \, k^2_\perp f_{1T}(x, k^2_\perp)\)

\[
\langle k^y \rangle = -\frac{1}{2p^+} \left\langle P, S \bigg| \bar{q}(0) \int_0^\infty dx^- \, gG^{+y}(x^-)\gamma^+q(0) \bigg| P, S \right\rangle
\]

semi-classical interpretation: average \(k_\perp\) in SIDIS obtained by correlating the quark density with the transverse impulse acquired from (color) Lorentz force acting on struck quark along its trajectory to (light-cone) infinity

matrix element defining \(d_2\) \(\leftrightarrow\) **1\(^{st}\) integration point in QS-integral**
Quark-Gluon Correlations: Interpretation

\[d_2 \equiv 3 \int dx \ x^2 \bar{g}_2(x) = \frac{1}{2MP^2 + 2S} \left\langle P, S \left| \bar{q}(0) g G^{+y}(0) \gamma^+ q(0) \right| P, S \right\rangle \]

color Lorentz force

\[
\sqrt{2} G^{+y} = G^{0y} + G^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B} \right)^y \text{ for } \vec{v} = (0, 0, -1)
\]

\[\rightarrow d_2 \leftrightarrow \text{average color Lorentz force} \text{ acting on quark moving with } v = c \text{ in } -\hat{z} \text{ direction in the instant after being struck by } \gamma^* \]

\[\langle F^y \rangle = -2M^2 d_2 = -\frac{M}{P^2 + 2S} \left\langle P, S \left| \bar{q}(0) g G^{+y}(0) \gamma^+ q(0) \right| P, S \right\rangle \]

sign of \(d_2 \leftrightarrow \perp \) imaging

- \(\kappa_q/p \rightarrow \) sign of deformation
- \(\rightarrow \) direction of average force
- \(d^u_2 > 0, \ d^d_2 < 0 \)
- \(\text{cf. } f_{1T}^\perp u < 0, \ f_{1T}^\perp u < 0 \)

lattice (Göckeler et al., 2005)

\[d^u_2 \approx 0.010, \ d^d_2 \approx -0.0056 \]

magnitude of \(d_2 \)

- \[\langle F^y \rangle = -2M^2 d_2 = -10 \frac{GeV}{fm} d_2 \]
- \(\text{expect partial cancellation of forces in SSA} \)
- \[|\langle F^y \rangle| \ll \sigma \approx 1 \frac{GeV}{fm} \]
- \(\rightarrow d_2 = O(0.01) \)
Deeply Virtual Compton Scattering \rightarrow GPDs

impact parameter dependent PDFs $q(x, b_\perp)$

$E^q(x, 0, -\Delta^2_\perp) \leftrightarrow \kappa_{q/p}$ (contribution from quark flavor q to anomalous magnetic moment)

$E^q(x, 0, -\Delta^2_\perp) \rightarrow \perp$ deformation of PDFs for \perp polarized target

\perp deformation $\leftrightarrow \text{(sign of) SSA (Sivers; Boer-Mulders)}$

parton interpretation for Ji-relation

higher-twist ($\int dx \, x^2 \bar{g}_2(x), \int dx \, x^2 \bar{e}(x)$) $\leftrightarrow \perp$ force in DIS

\perp deformation $\leftrightarrow \text{(sign of) quark-gluon correlations ($\int dx \, x^2 \bar{g}_2(x), \int dx \, x^2 \bar{e}(x)$)}$

combine complementary information from deeply-virtual Compton scattering, semi-inclusive DIS & Drell-Yan to study orbital angular momentum and map the 3-d structure of hadrons
Deeply Virtual Compton Scattering (DVCS)

Q^2 scaling for Compton form factor (JLab)