Initial shape and final flow fluctuations in event-by-event hydrodynamics for RHIC and LHC∗

Ulrich Heinz, The Ohio State University

Exploring QCD Frontiers: From RHIC and LHC to EIC
Stellenbosch, Jan. 30 - Feb. 3, 2012

with Zhi Qiu, Chun Shen & Huichao Song

*Work supported by the U.S. Department of Energy
Probing the landscape of QCD matter: The future is now

Probes:
- Collective flow
- Jet modification and quenching
- Thermal electro-magnetic radiation
- Critical fluctuations
- . . .
Small narrow bump near $\eta = 0$ due to Jacobian \[\frac{dN}{d\eta} = \int d^2p_T \frac{p_T \cosh \eta}{\sqrt{m^2 + p_T^2 \cosh^2 \eta}} \frac{dN}{dy d^2p_T} \] (dip in $dN/d\eta$ corresponds to bump in $v_2(\eta)$)
Panta rhei: “soft ridge” = “Mach cone” = flow!

ATLAS (J. Jia), Quark Matter 2011

ALICE (J. Grosse-Oetringhaus), QM11

M. Luzum, PLB 696 (2011) 499: All long-range rapidity correlations seen at RHIC are consistent with being entirely generated by hydrodynamic flow.

- anisotropic flow coefficients v_n and flow angles ψ_n correlated over large rapidity range!

- in the 1% most central collisions $v_3 > v_2$
 \[\Rightarrow \] prominent “Mach cone”-like structure!
 \[\Rightarrow \] event-by-event eccentricity fluctuations dominate!
Event-by-event shape and flow fluctuations rule!

(Alver and Roland, PRC81 (2010) 054905)

- Each event has a different initial shape and density distribution, characterized by different set of harmonic eccentricity coefficients ε_n.
- Each event develops its individual hydrodynamic flow, characterized by a set of harmonic flow coefficients v_n and flow angles ψ_n.
- At small impact parameters fluctuations ("hot spots") dominate over geometric overlap effects.

(Alver & Roland, PRC81 (2010) 054905; Qin, Petersen, Bass, Müller, PRC82 (2010) 064903)
Event-by-event shape and flow fluctuations rule!

- in the 1% most central collisions $v_3 > v_2 \implies$ prominent “Mach cone”-like structure!

- triangular flow angle uncorrelated with reaction plane and elliptic flow angles
 \implies due to event-by-event eccentricity fluctuations which dominate the anisotropic flows in the most central collisions
Fluctuation-driven anisotropic flow is indeed collective!

ALICE (J. Grosse-Oetringhaus) Quark Matter 2011

Two-particle Fourier coefficients factorize \(\langle v_n \Delta(p_{T1}, p_{T2}) = v_n(p_{T1}) v_n(p_{T2}) \rangle \) as required

Factorization shown to work for \(n = 2, 3, 4, 5 \) as long as both \(p_{T1}, p_{T2} < 3 \text{ GeV/c} \) (bulk matter)
Initial-state shape fluctuations
Smearing effects from nucleon growth at high energies

Between $\sqrt{s} = 23.5$ and $7,000$ GeV, nucleon area grows by factor $O(2)$ → significant smoothing of event-by-event density fluctuations from RHIC to LHC.
Eccentricity definitions:

Define event average \{\ldots\}, ensemble average \langle\ldots\rangle

Two choices for weight function in event average:

(i) Energy density $e(x_\perp;b)$

(ii) Entropy density $s(x_\perp;b)$

Define $\sigma^2_x = \{x^2\} - \{x\}^2$, $\sigma_{xy} = \{xy\} - \{x\}\{y\}$, etc.,

where x, y are reaction-plane coordinates ($e_x \parallel b$)

1. Standard eccentricity: $\varepsilon_s \equiv \bar{\varepsilon}_{RP} = \frac{\langle \sigma^2_y - \sigma^2_x \rangle}{\langle \sigma^2_y + \sigma^2_x \rangle}$ (calculated from RP-averaged $\langle e \rangle$ or $\langle s \rangle$)

2. Average reaction-plane eccentricity: $\langle \varepsilon_{RP} \rangle = \langle \frac{\sigma^2_y - \sigma^2_x}{\sigma^2_y + \sigma^2_x} \rangle$

3. Eccentricity of the participant-plane averaged source: $\bar{\varepsilon}_{part} = \sqrt{\langle \frac{(\sigma^2_y - \sigma^2_x)^2 + 4\sigma^2_{xy}}{\sigma^2_y + \sigma^2_x} \rangle}$

4. Average participant-plane eccentricity: $\langle \varepsilon_{part} \rangle = \sqrt{\langle \frac{(\sigma^2_y - \sigma^2_x)^2 + 4\sigma^2_{xy}}{\sigma^2_y + \sigma^2_x} \rangle}$

5. r.m.s. part.-plane eccentricity: $\varepsilon_{part}\{2\} \equiv \sqrt{\langle \varepsilon^2_{part} \rangle} = \sqrt{\langle \varepsilon_{part} \rangle^2 + \sigma^2_\varepsilon/2}$ for Gauss. fl.

6. 4th cumulant eccentricity: $\varepsilon_{part}\{4\} \equiv \left[\langle \varepsilon^2_{part} \rangle^2 - \langle \varepsilon^4_{part} \rangle - \langle \varepsilon^2_{part} \rangle^2 \right]^{1/4} = \sqrt{\langle \varepsilon_{part} \rangle^2 - \sigma^2_\varepsilon/2}$ for Gauss. fl.
MC-Glauber eccentricities (\(e\)-weighted):

\[
\langle \epsilon_{\text{part}} \rangle
\]
\[
\epsilon_{\text{part}}\{2\}
\]
\[
\epsilon_{\text{part}}\{4\}
\]
\[
\langle \epsilon_{\text{RP}} \rangle
\]
\[
\bar{\epsilon}_{\text{part}}
\]
\[
\bar{\epsilon}_{\text{RP}}
\]

Impact parameter \(b \) (fm)
MC-KLN eccentricities (e-weighted):

![Graph showing eccentricities as a function of impact parameter b (fm). The graph includes several curves representing different eccentricity measurements, such as $\langle \epsilon_{\text{part}} \rangle$, ϵ_{part}^2, ϵ_{part}^4, $\langle \epsilon_{R \rho} \rangle$, $\bar{\epsilon}_{\text{part}}$, and $\bar{\epsilon}_{R \rho}$. The x-axis represents the impact parameter in femtometers (fm), while the y-axis represents the eccentricity ϵ.]

[Ulrich Heinz, CPTEIC, 31 Jan. 2012]
Initial eccentricities $\varepsilon_n(n=2-5)$ vs. impact parameter

Zhi Qiu, UH, PRC84 (2011) 024911

- Contours: $e(r, \phi) = e_0 \exp \left[-\frac{r^2}{2\rho^2} \left(1 + \varepsilon_n \cos(n(\phi - \psi_n)) \right) \right]$
 where $\varepsilon_n e^{in\psi_n} = -\frac{\int r dr d\phi \, r^2 e^{in\phi} e(r,\phi)}{\int r dr d\phi \, r^2 e(r,\phi)}$

- MC-KLN has larger ε_2 and ε_4, but similar ε_5 and almost identical ε_3 as MC-Glauber ($\varepsilon_{3,5}$ are purely fluctuation-driven!)
Flow fluctuations in event-by-event hydro
Flow angle distributions (0–60% centrality):

\[
\varepsilon_n e^{i n \Psi_n^{PP}} = -\int r dr d\phi r^2 e^{i n \phi} e(r,\phi) \int r dr d\phi r^2 e(r,\phi)
\]

\[
v_n e^{i n \Psi_n^{EP}} = \frac{\int d\phi_p e^{i n \phi_p} (dN/d\phi_p)}{\int d\phi_p (dN/d\phi_p)}
\]

- Angles of $\varepsilon_{3,5}$ and $\nu_{3,5}$ uncorrelated with reaction plane (Qin et al., PRC 82 (2010) 064903)
- ν_4-angle Ψ_4^{EP} lies (on average) in the reaction plane even though ε_4-angle Ψ_4^{PP} points at $\pm \frac{\pi}{4} = \pm 45^\circ \implies \nu_4$ driven mostly by elliptic deformation ε_2, not ε_4.

Correlation between flow and eccentricity angles:

\[\psi_{2EP}^2 - \psi_{2PP}^2 \mod \frac{\pi}{2} \]

Strong angular correlation between elliptic flow and eccentricity, except near \(b=0 \).
Correlation between flow and eccentricity angles:

$$\psi_3^{EP} - \psi_3^{PP} \mod \frac{\pi}{3}$$

Four times weaker angular correlation between triangular flow and triangularity than for 2nd harmonic.
Correlation between flow and eccentricity angles:

\[\psi_{EP}^4 - \psi_{PP}^4 \mod \frac{\pi}{4} \]

- Near-central collisions: \(\psi_{EP}^4 \) (weakly) correlated with \(\psi_{PP}^4 \) \(\iff \) \(v_4 \) driven by \(\varepsilon_4 \)
- Peripheral collisions: \(\psi_{EP}^4 \) (weakly) anti-correlated with \(\psi_{PP}^4 \) \(\iff \) \(v_4 \) driven by \(\varepsilon_2 \)
- Mid-central to mid-peripheral: no correlation between \(\psi_{EP}^4 \) and \(\psi_{PP}^4 \)
Correlation between flow and eccentricity angles:

\[\psi_{EP}^5 - \psi_{PP}^5 \mod \frac{\pi}{5} \]

- Near-central collisions: \(\psi_{EP}^5 \) (weakly) correlated with \(\psi_{PP}^5 \) \(\Rightarrow v_5 \) driven by \(\varepsilon_5 \)
- Peripheral collisions: \(\psi_{EP}^5 \) (weakly) anti-correlated with \(\psi_{PP}^5 \) \(\Rightarrow v_5 \) strongly influenced by \(\varepsilon_{n\neq5} \)
- Mid-central to mid-peripheral: no correlation between \(\psi_{EP}^5 \) and \(\psi_{PP}^5 \)
Higher harmonic flows and associated eccentricities: v_2 vs. ε_2 (MC-KLN, e-weighted)

- Slightly non-linear dependence of v_2 on ε_2, especially in central and very peripheral collisions
- In the most peripheral centrality classes, slope of $v_2(\varepsilon_2)$ decreases
Higher harmonic flows and associated eccentricities: v_3 vs. ε_3 (MC-KLN, e-weighted)

- Slope of $v_3(\varepsilon_3)$ and value of v_3/ε_3 depend on centrality class.

- Non-zero triangular flow $v_3 \sim 1\% - 2\%$ even for zero triangularity ε_3.

 \Rightarrow other (odd) harmonic eccentricity coefficients feed into v_3.
Higher harmonic flows and associated eccentricities: v_4 vs. ε_4 (MC-KLN, e-weighted)

- Correlation between v_4 and ε_4 strongly centrality dependent
- In mid-central and peripheral collisions, v_4 is mostly generated by $\varepsilon_{n\neq4}$, in particular ε_2
- Even in central collisions, other $\varepsilon_{n\neq4}$ feed into v_4, generating non-zero v_4 for zero ε_4
Higher harmonic flows and associated eccentricities: v_5 vs. ε_5 (MC-KLN, e-weighted)

- Correlation between v_5 and ε_5 strongly centrality dependent
- In mid-central and peripheral collisions, v_5 is mostly generated by $\varepsilon_{n\neq 5}$
- Even in central collisions, other $\varepsilon_{n\neq 5}$ feed into v_5, generating non-zero v_5 for zero ε_5
Event-by-event vs. single-shot hydro
For most centralities, eccentricity-scaled $v_{2,3}$ from e-by-e and single-shot hydro agree within 5-10%.

Agreement between $\langle v_{2,3} \rangle / \langle \varepsilon_{2,3} \rangle$ and $v_{2,3} \{2\} / \varepsilon_{2,3} \{2\}$ is excellent at all centralities.

Agreement between $v_{2} \{2\} / \varepsilon_{2} \{2\}$ and $v_{2} \{4\} / \varepsilon_{2} \{4\}$ is good over most of the centrality range, but the analog relation for triangular flow does not work (note, however, limited statistics).

Can use single-shot hydro to compute $\langle v_{2,3} \rangle / \langle \varepsilon_{2,3} \rangle = v_{2,3} \{2\} / \varepsilon_{2,3} \{2\}$.
\((\eta/s)_{\text{QGP}}\)
How to use elliptic flow for measuring $(\eta/s)_{\text{QGP}}$

Hydrodynamics converts spatial deformation of initial state \implies momentum anisotropy of final state, through anisotropic pressure gradients

Shear viscosity degrades conversion efficiency

$$\varepsilon_x = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle} \implies \varepsilon_p = \frac{\langle T_{xx} - T_{yy} \rangle}{\langle T_{xx} + T_{yy} \rangle}$$

of the fluid; the suppression of ε_p is monotonically related to η/s.

The observable that is most directly related to the total hydrodynamic momentum anisotropy ε_p is the total (p_T-integrated) charged hadron elliptic flow v_2^{ch}:

$$\varepsilon_p = \frac{\langle T_{xx} - T_{yy} \rangle}{\langle T_{xx} + T_{yy} \rangle} \iff \sum_i \int p_T dp_T \int d\phi_p \frac{p_T^2}{d\phi_T dp_T} \cos(2\phi_p) \frac{dN_i}{d\phi_T dp_T d\phi_p} \iff v_2^{\text{ch}}$$

Ulrich Heinz

How to use elliptic flow for measuring \((\eta/s)_{\text{QGP}}\) (contd.)

- **If** \(\varepsilon_p\) **saturates** before hadronization (e.g. in PbPb@LHC (?))
 \[\Rightarrow \ v_{2}^{\text{ch}} \approx \text{not affected by details of hadronic rescattering below} \ T_c \]

 but: \(v_2^{(i)}(p_T), \quad \frac{dN_i}{dyd^2p_T}\) change during hadronic phase (addl. radial flow!), and these changes depend on details of the hadronic dynamics (chemical composition etc.)

 \[\Rightarrow \ v_2(p_T) \text{ of a single particle species not a good starting point for extracting } \eta/s \]

- **If** \(\varepsilon_p\) **does not saturate** before hadronization (e.g. AuAu@RHIC), dissipative hadronic dynamics affects not only the distribution of \(\varepsilon_p\) over hadronic species and in \(p_T\), but even the final value of \(\varepsilon_p\) itself (from which we want to get \(\eta/s\))

 \[\Rightarrow \ \text{need hybrid code that couples viscous hydrodynamic evolution of QGP to realistic microscopic dynamics of late-stage hadron gas phase} \]

 \[\Rightarrow \ \text{VISHNU ("Viscous Israel-Steward Hydrodynamics 'n' UrQMD")} \]

 (Song, Bass, UH, PRC83 (2011) 024912) \ Note: this paper shows that UrQMD \(\neq\) viscous hydro!
Extraction of \((\eta/s)_{\text{QGP}}\) from AuAu@RHIC

\[1 < 4\pi(\eta/s)_{\text{QGP}} < 2.5 \]

- All shown theoretical curves correspond to parameter sets that correctly describe centrality dependence of charged hadron production as well as \(p_T\)-spectra of charged hadrons, pions and protons at all centralities.
- \(v_2^{ch}/\varepsilon_x\) vs. \((1/S)(dN_{ch}/dy)\) is “universal”, i.e. depends only on \(\eta/s\) but (in good approximation) not on initial-state model (Glauber vs. KLN, optical vs. MC, RP vs. PP average, etc.).
- Dominant source of uncertainty: \(\varepsilon_{x}^{\text{G1}}\) vs. \(\varepsilon_{x}^{\text{KLN}}\)
- Smaller effects: early flow \(\rightarrow\) increases \(v_2^{ch}/\varepsilon\) by ~few % \(\rightarrow\) larger \(\eta/s\)

\(\text{bulk viscosity} \rightarrow\) affects \(v_2^{ch}(p_T)\), but \(\approx\) not \(v_2^{ch}\)

Zhi Qiu, UH, PRC84 (2011) 024911
Global description of AuAu@RHIC spectra and v_2

- $(\eta/s)_{QGP} = 0.08$ for MC-Glauber and $(\eta/s)_{QGP} = 0.16$ for MC-KLN work well for charged hadron, pion and proton spectra and $v_2(p_T)$ at all collision centralities

- Note: $T_{chem} = 165\,\text{MeV}$ reproduces the proton spectra from STAR, but not from PHENIX! Slightly incorrect chemical composition in hadronic phase? Not enough $p\bar{p}$ annihilation in UrQMD?
Global description of AuAu@RHIC spectra and ν_2

- $(\eta/s)_{QGP} = 0.08$ for MC-Glauber and $(\eta/s)_{QGP} = 0.16$ for MC-KLN work well for charged hadron, pion and proton spectra and $\nu_2(p_T)$ at all collision centralities
- A purely hydrodynamic model (without UrQMD afterburner) with the same values of η/s does almost as well (except for centrality dependence of proton $\nu_2(p_T)$) (C. Shen et al., PRC84 (2011) 044903)
 Main difference: VISHNU develops more radial flow in the hadronic phase (larger shear viscosity), pure viscous hydro must start earlier than VISHNU ($\tau_0 = 0.6$ instead of 1.05 fm/c), otherwise proton spectra are too steep
- These η/s values agree with Luzum & Romatschke, PRC78 (2008), even though they used EOS with incorrect hadronic chemical composition shows robustness of extracting η/s from total charged hadron ν_2
After normalization in 0-5% centrality collisions, MC-KLN + VISHNU (w/o running coupling, but including viscous entropy production!) reproduces centrality dependence of $dN_{ch}/d\eta$ well in both AuAu@RHIC and PbPb@LHC.

- $(\eta/s)_{QGP} = 0.16$ for MC-KLN works well for charged hadron $v_2(p_T)$ and integrated v_2 in AuAu@RHIC, but overpredicts both by about 10-15% in PbPb@LHC.

- Similar results from predictions based on pure viscous hydro (C. Shen et al., PRC84 (2011) 044903)

- **but**: At LHC significant sensitivity of v_2 to initialization of viscous pressure tensor $\pi^{\mu\nu}$ (Navier-Stokes or zero) \Rightarrow need pre-equilibrium model.

\Rightarrow QGP at LHC not much more viscous than at RHIC!
Why is $v_2^{ch}(p_T)$ the same at RHIC and LHC?

Answer: Pure accident! (Kestin & Heinz EPJC61 (2009) 545)

$v_2^{\pi}(p_T)$ increases a bit from RHIC to LHC, for heavier hadrons $v_2(p_T)$ at fixed p_T decreases

(radial flow pushes momentum anisotropy of heavy hadrons to larger p_T)

This is a hard prediction of hydrodynamics! (See also Nagle, Bearden, Zajc, NJP13 (2011) 075004)
Confirmation of increased mass splitting at LHC

Data: ALICE @ LHC, Quark Matter 2011 (symbols), PHENIX @ RHIC (shaded)

Lines: Shen et al., PRC84 (2011) 044903 (VISH2+1 + MC-KLN, $\eta/s=0.2$)

- Qualitative features of data agree with VISH2+1 predictions
- VISH2+1 does not push proton v_2 strongly enough to higher p_T, both at RHIC and LHC
- At RHIC we know that this is fixed when using VISHNU – is the same true at LHC?
Successful prediction of $v_2(p_T)$ for identified hadrons in PbPb@LHC

Data: ALICE, Quark Matter 2011
Prediction: Shen et al., PRC84 (2011) 044903 (VISH2+1)

Perfect fit in semi-peripheral collisions!

The problem with insufficient proton radial flow exists only in more central collisions

Adding the hadronic cascade (VISHNU) helps:
$v_2(p_T)$ in PbPb@LHC: ALICE vs. VISHNU

Data: ALICE, preliminary (Snellings, Krzewicki, Quark Matter 2011)
Dashed lines: Shen et al., PRC84 (2011) 044903 (VISH2+1, MC-KLN, $(\eta/s)_{QGP}=0.2$)
Solid lines: Song, Shen, UH 2011 (VISHNU, MC-KLN, $(\eta/s)_{QGP}=0.16$)

VISHNU yields correct magnitude and centrality dependence of $v_2(p_T)$ for pions, kaons and protons!

Same $(\eta/s)_{QGP} = 0.16$ (for MC-KLN) at RHIC and LHC!
Good description also of identified hadron spectra for centralities $< 50\%$

VISHNU better than VISH2+1 in central collisions (more radial flow)

Both models give too much radial flow in peripheral collisions \implies initial conditions?

Both models overpredict proton yield by 50-70%!
The new “proton anomaly”: disagreement with the thermal model

Data: ALICE, preliminary (A. Kalweit, Strange Quark Matter 2011)

- “Standard” $T_{\text{chem}} = 164$ MeV reproduces strange hadrons but overpredicts (anti-)protons by 50%!
- $p\bar{p}$ annihilation in UrQMD not strong enough to repair this
- Similar problem already seen at RHIC but not taken seriously (STAR/PHENIX disagreement)

\bar{p}/p annihilation in UrQMD not strong enough to repair this
Back to the “elephant in the room”: How to eliminate the large model uncertainty in the initial eccentricity?
Two observations:

I. Shear viscosity suppresses higher flow harmonics more strongly

\[\frac{v_n}{\varepsilon_n} \]

\[\frac{v_3}{\varepsilon_3} \]

\[\frac{v_4}{\varepsilon_4} \]

\[\frac{v_5}{\varepsilon_5} \]

Alver et al., PRC82 (2010) 034913
(averaged initial conditions)

Schenke et al., arXiv:1109.6289
(event-by-event hydro)

\[\frac{v_n(\eta/s=0.08)}{v_n(\text{ideal})} \]

\[\frac{v_n(\eta/s=0.16)}{v_n(\text{ideal})} \]

\[20-30\% \]

⇒ Idea: Use simultaneous analysis of elliptic and triangular flow to constrain initial state models
(see also Bhalerao, Luzum Ollitrault, PRC 84 (2011) 034910)

II. \(\varepsilon_3 \) is \(\approx \) model independent

While \(v_4 \) and \(v_5 \) have mode-coupling contributions from \(\varepsilon_2 \), \(v_3 \) is almost pure response to \(\varepsilon_3 \) and
\(\frac{v_3}{\varepsilon_3} \approx \text{const.} \) over a wide range of centralities

⇒ Idea: Use total charged hadron \(v_{3}^{\text{ch}} \) to determine \((\eta/s)_{\text{QGP}} \),
then check \(v_{2}^{\text{ch}} \) to distinguish between MC-KLN and MC-Glauber!
Glauber in, KLN out!
Zhi Qiu, C. Shen, UH, arXiv:1110.3033 (VISH2+1)

- Both MC-KLN with $\eta/s = 0.2$ and MC-Glauber with $\eta/s = 0.08$ give very good description of v_2/ε_2 at all centralities.

- Only MC-Glauber initial conditions with $\eta/s = 0.08$ describe v_3/ε_3

PHENIX, comparing to calculations by Alver et al. (PRC82 (2010) 034913), come to similar conclusions at RHIC energies (Adare et al., arXiv:1105.3928, and Lacey et al., arXiv:1108.0457)

- Large v_3 measured at RHIC and LHC requires small $(\eta/s)_{QGP} \simeq 1/(4\pi)$ unless the fluctuations predicted by both models are completely wrong and ε_3 is really 50% larger than we presently believe!
Conclusions

• We have come a long way over the last couple of years:
 I believe that the issue of the QGP shear viscosity at RHIC and LHC energies is now settled:

 \[
 \left(\frac{\eta}{s} \right)_{\text{QGP}}(T_c < T < 2T_c) = \frac{1}{4\pi} \pm 50\%
 \]

 A moderate increase between \(2T_c\) and \(3T_c\) can at present not be excluded but is not mandated
 by the data.

• Ingredients that matter at the 50\% level and are under control:
 – relativistic viscous fluid dynamics
 – realistic EOS with correct non-equilibrium composition in HG phase
 – microscopic description of the highly dissipative hadronic stage, including all resonance decays
 – fluctuating initial conditions, simultaneous study of \(v_2\) and \(v_3\)

• Ingredients that matter at the < 25\% level and require further study:
 – bulk viscosity
 – temperature dependence of \(\left(\frac{\eta}{s} \right)_{\text{QGP}}\)
 – pre-equilibrium flow
 – event-by-event hydro evolution vs. single-shot hydro with averaged initial profiles
 – \((3+1)\)-d vs. \((2+1)\)-d evolution
 – study of higher harmonics; influence of nucleon growth with \(\sqrt{s}\) on fluctuations
 – flow fluctuations and flow angle correlations for different harmonics

The ultimate theoretical question:

\textbf{Why is } \left(\frac{\eta}{s} \right)_{\text{QGP}} \text{ as small as it is?}
Outlook: A beautiful analogy with the Big Bang:
The fluctuation “power spectrum” of the Little Bang

Mocsy & Sorensen, NPA855 (2011) 241, PLB705 (2011) 71
The fluctuation “power spectrum” of the Little Bang

Relating the measured “anisotropic flow power spectrum” (i.e. v_n vs. n) to the “initial fluctuation power spectrum” (i.e. ε_n vs. n) provides access to the QGP transport coefficients (likely not only η/s, but also ζ/s, τ_{π}, τ_{Π} …)

Power spectrum of initial fluctuations (in particular its \sqrt{s} dependence) can (probably) be calculated from first principles via CGC effective theory (Dusling, Gelis, Venugopalan, arXiv:1106.3927)

Collisions between different species, at different collision centralities, and at different \sqrt{s} create Little Bangs with characteristically different power spectra

The Concordance Model of Little Bang Cosmology!

Ulrich Heinz
Supplements
Global description of AuAu@RHIC spectra and v_2

$$(\eta/s)_{QGP} = 0.08 \text{ for MC-Glauber and } (\eta/s)_{QGP} = 0.16 \text{ for MC-KLN works well for charged hadron, pion and proton spectra and } v_2(p_T) \text{ at all collision centralities}$$
Comparison of ALICE PbPb@LHC v_2 data with VISH2+1

Data: ALICE, preliminary (Snellings, Krzewicki, Quark Matter 2011)
Prediction: C. Shen et al., PRC84 (2011) 044903 (VISH2+1, MC-KLN, $\eta/s=0.2$)
In central collisions no difference between the models.

In peripheral collisions p_T-spectra from MC-Glauber IC too steep!

This is an artifact of single-shot hydro with averaged initial profile; for small $\eta/s = 0.08$ (but not for $\eta/s = 0.2$!), e-by-e hydro gives flatter p_T-spectra in peripheral collisions, due to hot spots
s95p-PCE: A realistic, lattice-QCD-based EOS

Huovinen, Petreczky, NPA 837 (2010) 26
Shen, Heinz, Huovinen, Song, PRC 82 (2010) 054904

High T: Lattice QCD (latest hotQCD results)

Low T: Chemically frozen HRG ($T_{\text{chem}} = 165$ MeV)

No softest point!
s95p-PCE: A realistic, lattice-QCD-based EOS

Huovinen, Petreczky, NPA 837 (2010) 26
Shen, Heinz, Huovinen, Song, PRC 82 (2010) 054904

Generates less radial flow than SM-EOS Q and EOS L but larger momentum anisotropy

Smooth transition leads to smaller δf at freeze-out

\Rightarrow larger v_2
H$_2$O: Hydro-to-OSCAR converter

Monte-Carlo interface that samples hydrodynamic Cooper-Frye spectra (including viscous correction δf) on conversion surface to generate particles at positions x_{i}^{μ} with momenta p_{i}^{μ} for subsequent propagation in UrQMD (or any other OSCAR-compatible hadron cascade afterburner)

Song, Bass, Heinz, PRC 83 (2011) 024912
VISHNU: hydro (VISH2+1) + cascade (UrQMD) hybrid

Sensitivity to H_2O switching temperature:

With chemically frozen EOS (s95p-PCE), p_T-spectra show very little sensitivity to T_{sw} (Teaney, 2000):

Song, Bass, Heinz, PRC 83 (2011) 024912

200 A GeV Au+Au, $b = 7$ fm

![Graph showing p_T-spectra with different T_{sw} values]
VISHNU: hydro (VISH2+1) + cascade (UrQMD) hybrid

Sensitivity to H_2O switching temperature:

With chemically frozen EOS (s95p-PCE), p_T-spectra show very little sensitivity to T_{sw} but v_2 does:

Song, Bass, Heinz, PRC 83 (2011) 024912

Viscous hydro with fixed $\eta/s = 0.08$ generates more v_2 below T_c than does UrQMD \implies UrQMD is more dissipative

VISH2+1 simulation of UrQMD dynamics requires T-dependent $(\eta/s)(T)$ that increases towards lower temperature
Is there a switching window in which UrQMD can be simulated by viscous hydro?

Unfortunately NO!

\((\eta/s)(T)\) extracted by trying to reproduce \(v_2\) independent of switching temperature depends on \(\delta f\) input into UrQMD from hadronizing QGP

\(\Rightarrow\) \(\delta f\) relaxes too slowly in UrQMD to be describable by viscous Israel-Stewart hydro

\(\Rightarrow\) extracted \((\eta/s)(T)\) not a proper UrQMD transport coefficient

\(\Rightarrow\) UrQMD dynamics can’t be described by viscous Israel-Stewart hydrodynamics